inference
Example setup
For the illustartion below, we set up the same example as in cpm.Cpm
.
import numpy as np
from mbnpy import cpm, variable, inference
# Define variables and CPMs
varis = {}
varis['x1'] = variable.Variable('x1', ['fail', 'surv'])
varis['x2'] = variable.Variable('x2', ['f', 's'])
varis['x3'] = variable.Variable('x3', ['f', 's'])
cpms = {}
cpms['x1'] = cpm.Cpm([varis['x1']], no_child=1, C=np.array([[0], [1]], dtype=int), p = np.array([0.1, 0.9]))
cpms['x2'] = cpm.Cpm([varis['x2']], no_child=1, C=np.array([[0], [1]], dtype=int), p = np.array([0.2, 0.8]))
# 'x3' is a series system of 'x1' and 'x2'
cpms['x3'] = cpm.Cpm([varis['x3'], varis['x1'], varis['x2']], no_child=1,
C=np.array([[0, 0, 2], [0, 1, 0], [1, 1, 1]], dtype=int), p = np.array([1.0, 1.0, 1.0]))
Methods
- inference.condition(cpms, cnd_vars, cnd_states)
Condition the CPMs on the given variables and states.
- param cpms:
List or dictionary of CPMs.
- type cpms:
list or dict of Cpm
- param cnd_vars:
List of variables to condition on.
- type cnd_vars:
list of Variable
- param cnd_states:
List of states to condition on.
- type cnd_states:
list of int
- return:
Conditioned CPMs.
- rtype:
list or dict of Cpm
Example:
cpm_x3_0 = inference.condition([cpms['x3']], [varis['x3']], [0]) print(cpm_x3_0)
Output:
[Cpm(variables=['x3', 'x1', 'x2'], no_child=1, C=[[0 0 2] [0 1 0]], p=[[1.] [1.]], )]
Notice that the previous last row of the C matrix and p vector are removed.
isinscope
- inference.isinscope(idx, cpms):
Check if variables are in the scope of a given set of CPMs.
- param idx:
list of variable names
- type idx:
list of str
- param cpms:
list or dictionary of CPMs.
- type cpms:
list or dict of Cpm
- return:
True if any of the variables are in the scope of the CPMs.
- rtype:
list of bool
Example:
isin = inference.isinscope(['x1'], cpms) print(isin)
Output:
[[ True] [False] [ True]]
variable_elim
- inference.variable_elim(cpms, var_elim, prod=True)
Perform variable elimination on the given CPMs.
- param cpms:
List or dictionary of CPMs.
- type cpms:
list or dict of Cpm
- param var_elim:
List of variables to eliminate in the order of elimination.
- type var_elim:
list of Variable
- param prod:
If True, the Cpm is returned as a product of the remaining CPMs. If False, a list of CPMs are returned after variable elimination.
- return:
Resulting CPM.
- rtype:
Cpm or list of Cpm
Example:
M_x3 = inference.variable_elim(cpms, [varis['x1'], varis['x2']]) print(M_x3)
Output:
Cpm(variables=['x3'], no_child=1, C=[[0] [1]], p=[[0.28] [0.72]], )
The CPM represents \(P(X_3) = \sum_{X_2} P(X_2) \cdot \sum_{X_1} P(X_3| X_1, X_2) \cdot P(X_1)\).
get_inf_vars
- inference.get_inf_vars(cpms, varis, ve_ord=None)
Get the list of variables in the scope of variables in
varis
.- param cpms:
List or dictionary of CPMs.
- type cpms:
list or dict of Cpm
- param varis:
A list of variable names or a single variable name whose marginal distributions are of interest.
- type varis:
A list of str or str
- param ve_ord:
variable names in the order of elimination. If provided, the function returns the variables in the given order.
- type ve_ord:
list of str
- return:
List of variable names in the scope of the given variables.
- rtype:
list of str
Example:
Below, an irrelevant variable ‘x4’ is added:
varis['x4'] = variable.Variable('x4', ['f', 's']) cpms['x4'] = cpm.Cpm([varis['x4']], no_child=1, C = np.array([[0], [1]], dtype=int), p = np.array([0.3, 0.7]))
Then, the function is applied:
varis_inf = inference.get_inf_vars(cpms, 'x3', ['x1', 'x2']) print(varis_inf)
Output:
['x1', 'x2', 'x3']
Notice that ‘x4’ is not included in the list. With the list that includes only relevant variables to obtain the marginal distribution of ‘x3’, one can perform variable elimination:
M_x3 = inference.variable_elim([cpms[x] for x in varis_inf], [varis['x1'], varis['x2']]) print(M_x3)
Output:
Cpm(variables=['x3'], no_child=1, C=[[0] [1]], p=[[0.28] [0.72]], )
where the result is the same as the previous example with
inference.variable_elim
. By eliminating irrelevant variables, one can save computational time.
prod_Msys_and_Mcomps
- prod_Msys_and_Mcomps(Msys, Mcomps_list)
Compute the product of a system CPM and the list of component CPMs: \(P(X_{sys},X_1,...,X_n) = P(X_{sys}|X_1,...,X_n) \cdot P(X_1) \cdot ... \cdot P(X_n)\). The function is faster than
product
by exploiting the knowledge on which one is a system CPM and which ones are component CPMs.- param Msys:
System CPM.
- type Msys:
Cpm
- param Mcomps_list:
List of component CPMs.
- type Mcomps_list:
list of Cpm
- return:
Product of the system and component CPMs.
- rtype:
Cpm
Example:
Mprod = inference.prod_Msys_and_Mcomps(cpms['x3'], [cpms['x1'], cpms['x2']]) print(Mprod)
Output:
Cpm(variables=['x3', 'x1', 'x2'], no_child=3, C=[[0 0 2] [0 1 0] [1 1 1]], p=[[0.1 ] [0.18] [0.72]], )