=============================== Getting Started with MBNpy =============================== This guide intorudces using MBNpy for **risk/reliability analysis of system event**. This guide walks through **installation, defining variables and probability distributions, and performing system analysis**. .. contents:: Table of Contents :depth: 2 :local: --------------------------------- Installation ------------ MBNpy is available via **pip**: .. code-block:: bash pip install mbnpy To install from source: .. code-block:: bash git clone https://github.com/jieunbyun/MBNpy.git cd MBNpy pip install . MBNpy requires **Python 3.12+**. --------------------------------- Example Problem --------------- This example demonstrates application for the **reliability block diagram** from the `2019 MBN paper `_. The system consists of **8 components** (:math:`X1` to :math:`X8`), each with **two states**: - :math:`0`: Failure - :math:`1`: Survival Components are **statistically independent** with: - :math:`P(X_i=0) = 0.1` - :math:`P(X_i=1) = 0.9` The **system state (:math:`X_9`) depends on the connection from source to sink**. .. figure:: _static/img/rbd_ex/rbd.jpg :width: 600px :align: center :alt: Reliability Block Diagram **Figure 1**: Reliability block diagram (RBD). The **Bayesian network (BN) representation** is: .. figure:: _static/img/rbd_ex/rbd_bn.jpg :width: 300px :align: center :alt: Bayesian Network Representation **Figure 2**: Bayesian network representation of the system. --------------------------------- Objectives --------------- 1. Compute the **system failure probability** :math:`P(X_9=0)`. 2. Identify **critical components** using component importance measures. For technical details, see: **Byun et al. (2019)** *Matrix-based Bayesian networks, Reliability Engineering & System Safety, 185, 533-545.* **Byun & Song (2021)** *Generalized matrix-based Bayesian networks, Reliability Engineering & System Safety, 211, 107468.* --------------------------------- Defining Variables in MBNpy --------------------------- To model a Bayesian network, **variables must be defined first**. Each **component** is a `Variable` object: .. code-block:: python from mbnpy import variable varis = {} varis['x1'] = variable.Variable(name='x1', values=['f', 's']) - The **variable dictionary** (``varis``) stores all model variables. - ``"f"`` and ``"s"`` correspond to **failure** (``0``) and **survival** (``1``). - The numerical index assigned to each state is determined by its position in the ``values`` list. All 8 components are defined using a loop: .. code-block:: python n_comp = 8 for i in range(1, n_comp): varis[f'x{i+1}'] = variable.Variable(name=f'x{i+1}', values=['f', 's']) print(varis['x8']) # Check last component The system variable (:math:`X_9`) is defined similarly: .. code-block:: python varis['x9'] = variable.Variable(name='x9', values=['f', 's']) --------------------------------- Defining Probability Distributions --------------------------------- The **conditional probability matrix (CPM)** represents probability distributions. Since **components** (:math:`X_1` to :math:`X_8`) **have no parents**, they are defined as **marginal probabilities**: .. code-block:: python from mbnpy import cpm import numpy as np cpms = {} cpms['x1'] = cpm.Cpm( variables=[varis['x1']], no_child=1, C=np.array([[0], [1]]), p=np.array([0.1, 0.9]) ) - ``variables``: A list of variables involved in the distribution (e.g., ``X1``). - ``no_child``: The number of child nodes (1 in this case). - ``C`` (Event Matrix): Specifies the state of each instance. - ``p`` (Probability Vector): Defines the corresponding probabilities. This process is repeated for all components: .. code-block:: python for i in range(1, n_comp): cpms[f'x{i+1}'] = cpm.Cpm( variables=[varis[f'x{i+1}']], no_child=1, C=np.array([[0], [1]]), p=np.array([0.1, 0.9]) ) The **system** (:math:`X_9`) **is defined using the branch-and-bound method**: .. figure:: _static/img/rbd_ex/rbd_bnb.jpg :width: 400px :align: center The ``Csys`` and ``psys`` matrices are constructed: .. code-block:: python Csys = np.array([ [0, 2, 2, 2, 2, 2, 2, 2, 0], [0, 2, 2, 2, 2, 2, 2, 0, 1], [1, 1, 2, 2, 2, 2, 2, 1, 1], [1, 0, 1, 2, 2, 2, 2, 1, 1], [1, 0, 0, 1, 2, 2, 2, 1, 1], [0, 0, 0, 0, 0, 2, 2, 1, 1], [0, 0, 0, 0, 1, 0, 2, 1, 1], [0, 0, 0, 0, 1, 1, 0, 1, 1], [1, 0, 0, 0, 1, 1, 1, 1, 1] ]) psys = np.array([[1.0] * 9]).T cpms['x9'] = cpm.Cpm( variables=[varis['x9'], varis['x1'], varis['x2'], varis['x3'], varis['x4'], varis['x5'], varis['x6'], varis['x7'], varis['x8']], no_child=1, C=Csys, p=psys ) --------------------------------- System Analysis --------------- Variable elimination is applied to compute the system failure probability. To determine the probability distribution of the system event, all component variables except for :math:`X_9` are eliminated. .. code-block:: python from mbnpy import inference cpm_sys = inference.variable_elim( cpms, [varis[f'x{i+1}'] for i in range(8)] ) print(f'System failure probability: {cpm_sys.p[0][0]:.2f}') Component importance measures are calculated, following `Kang et al. (2008) `_'s definition :math:`CIM_i = P(X_i=0|X_9=0) = P(X_i=0,X_9=0) / P(X_9=0)`: .. code-block:: python CIMs = {} for i in range(n_comp): varis_elim = [varis[f'x{j+1}'] for j in range(n_comp) if j != i] cpm_sys_xi = inference.variable_elim(cpms, varis_elim) prob_s0_x0 = cpm_sys_xi.get_prob([f'x{i+1}', 'x9'], [0,0]) CIMs[f'x{i+1}'] = prob_s0_x0 / cpm_sys.p[0][0] print(CIMs)